Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 320: 121203, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659791

RESUMO

Based on stimuli in the biological milieu, macrophages can undergo classical activation into the M1 pro-inflammatory (anti-cancer) phenotype or to the alternatively activated M2 anti-inflammatory one. Drug-free biomaterials have emerged as a new therapeutic strategy to modulate macrophage phenotype. Among them, polysaccharides polarize macrophages to M1 or M2 phenotypes based on the surface receptors they bind. Levan, a fructan, has been proposed as a novel biomaterial though its interaction with macrophages has been scarcely explored. In this study, we investigate the interaction of non-hydrolyzed and hydrolyzed Halomonas levan and its sulfated derivative with human macrophages in vitro. Viability studies show that these levans are cell compatible. In addition, RNA-sequencing analysis reveals the upregulation of pro-inflammatory pathways. These results are in good agreement with real time-quantitative polymerase chain reaction that indicates higher expression levels of C-X-C Motif Chemokine Ligand 8 and interleukin-6 genes and the M2-to-M1 reprogramming of these cells upon levan treatment. Finally, cytokine release studies confirm that hydrolyzed levans increase the secretion of pro-inflammatory cytokines and reprogram IL-4-polarized macrophages to the M1 state. Overall findings indicate that Halomonas levans trigger a classical macrophage activation and pave the way for their application in therapeutic interventions requiring a pro-inflammatory phenotype.


Assuntos
Halomonas , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Frutanos/farmacologia , Materiais Biocompatíveis , Citocinas/genética , Macrófagos
2.
J Mater Chem B ; 11(35): 8471-8483, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37587844

RESUMO

Macrophages are immune cells that can be activated into either pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Attempts to modulate macrophage phenotype using drugs have been limited by targeting issues and systemic toxicity. This study investigates the effect of drug-free self-assembled hydrolyzed galactomannan-poly(methyl methacrylate) (hGM-g-PMMA) nanoparticles on the activation of the human monocyte-derived macrophage THP-1 cell line. Nanoparticles are cell compatible and are taken up by macrophages. RNA-sequencing analysis of cells exposed to NPs reveal the upregulation of seven metallothionein genes. Additionally, the secretion of pro-inflammatory and anti-inflammatory cytokines upon exposure of unpolarized macrophages and M1-like cells obtained by activation with lipopolysaccharide + interferon-γ to the NPs is reduced and increased, respectively. Finally, nanoparticle-treated macrophages promote fibroblast migration in vitro. Overall, results demonstrate that hGM-g-PMMA nanoparticles induce the release of anti-inflammatory cytokines by THP-1 macrophages, which could pave the way for their application in the therapy of different inflammatory conditions, especially by local delivery.


Assuntos
Nanopartículas , Polimetil Metacrilato , Humanos , Polimetil Metacrilato/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas , Macrófagos , Fenótipo
3.
J Control Release ; 339: 473-483, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662585

RESUMO

Macrophages are highly plastic phagocytic cells that can exist in distinct phenotypes and play key roles in physiological and pathological pathways. They can be classically activated to the pro-inflammatory M1 phenotype or alternatively activated to an M2 anti-inflammatory one by various stimuli in the biological milieu. Different biomaterials polarize macrophages to M1 or M2 phenotypes and emerged as a very promising strategy to modulate their activation and performance. In this work, we investigate the ability of drug-free amphiphilic nanoparticles (hydrodynamic diameter of ~130 nm) produced by the self-assembly of a graft copolymer of hydrolyzed galactomannan, a natural polysaccharide of galactose and mannose, that was hydrophobized in the side-chain with poly(methyl methacrylate) blocks and that can encapsulate hydrophobic drugs, to trigger macrophage polarization. The compatibility and uptake of the nanoparticles are demonstrated in the murine macrophage cell line RAW264.7 by a metabolic assay, confocal laser scanning fluorescence microscopy (CLSFM) and imaging flow cytometry in the absence and the presence of endocytosis inhibitors. Results indicate that they are internalized by both clathrin- and caveolin-mediated endocytosis. The ability of these drug-free nanoparticles to polarize these cells to the M2-like phenotype and to switch an M1 to an M2 phenotype is confirmed by the downregulation of the M1 marker cluster of differentiation 80 (CD80), and upregulation of M2 markers CD163 and CD206, as measured by flow cytometry and CLSFM. In addition, we preliminarily assess the effect of the nanoparticles on wound healing by tracking the closure of an artificial wound of RAW264.7 macrophages in a scratch assay. Findings indicate a faster closure of the wound in the presence of the nanoparticles with respect to untreated cells. Finally, a migration assay utilizing a macrophage/fibroblast co-culture model in vitro demonstrates that M2 polarization increases fibroblast migration by 24-fold with respect to untreated cells. These findings demonstrate the ability of this nanotechnology platform to interfere and change the macrophages phenotype in vitro and represent robust evidence for the investigation of their therapeutic performance alone or in combination with an encapsulated hydrophobic drug in wound models in vivo.


Assuntos
Citocinas , Nanopartículas , Animais , Galactose/análogos & derivados , Macrófagos , Mananas , Camundongos
4.
ACS Appl Mater Interfaces ; 11(42): 38483-38496, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31537060

RESUMO

In this work, we designed, characterized, and investigated the performance of hydrolyzed galactomannan (hGM)-based amphiphilic nanoparticles for selective intratumoral accumulation in pediatric patient-derived sarcomas. To create a self-assembly amphiphilic copolymer, the side chain of hGM was hydrophobized with poly(methyl methacrylate) (PMMA) by utilizing a graft free radical polymerization reaction. Different hGM and MMA weight feeding ratios were used to adjust the critical aggregation concentration and the size and size distribution of the nanoparticles. The ability to actively target glucose transporter-1 (GLUT-1) was studied by fluorescence confocal microscopy and imaging flow cytometry in vitro on Rh30 (rhabdomyosarcoma) and patient-derived Ewing sarcoma (HSJD-ES-001) cell lines with different expression levels of GLUT-1. Results confirmed that the nanoparticles are internalized by ∼100% of the cells at 37 °C. Furthermore, we investigated the biodistribution of the nanoparticles in pediatric patient-derived models of two deadly musculoskeletal tumors, rhabdomyosarcoma and Ewing sarcoma. Outstandingly, the intratumoral accumulation of the nanoparticles correlated very well with the expression level of GLUT1 gene in each patient-derived tumor (P = 0.0141; Pearson's correlation test). Finally, we demonstrated the encapsulation capacity of these nanoparticles by loading 7.5% (w/w) of the hydrophobic first-generation tyrosine kinase inhibitor imatinib. These findings point out the potential of this new type of nanoparticle to target GLUT-1-expressing tumors and selectively deliver anticancer agents.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Mananas/química , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Criança , Portadores de Fármacos/química , Galactose/análogos & derivados , Transportador de Glucose Tipo 1/genética , Xenoenxertos , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/uso terapêutico , Camundongos , Microscopia Confocal , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Polimetil Metacrilato/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/patologia , Distribuição Tecidual
5.
Oncotarget ; 10(41): 4091-4106, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31289609

RESUMO

The Cannabis plant contains over 100 phytocannabinoids and hundreds of other components. The biological effects and interplay of these Cannabis compounds are not fully understood and yet influence the plant's therapeutic effects. Here we assessed the antitumor effects of whole Cannabis extracts, which contained significant amounts of differing phytocannabinoids, on different cancer lines from various tumor origins. We first utilized our novel electrospray ionization liquid chromatography mass spectrometry method to analyze the phytocannabinoid contents of 124 Cannabis extracts. We then monitored the effects of 12 chosen different Cannabis extracts on 12 cancer cell lines. Our results show that specific Cannabis extracts impaired the survival and proliferation of cancer cell lines as well as induced apoptosis. Our findings showed that pure (-)-Δ9-trans-tetrahydrocannabinol (Δ9-THC) did not produce the same effects on these cell lines as the whole Cannabis extracts. Furthermore, Cannabis extracts with similar amounts of Δ9-THC produced significantly different effects on the survival of specific cancer cells. In addition, we demonstrated that specific Cannabis extracts may selectively and differentially affect cancer cells and differing cancer cell lines from the same organ origin. We also found that cannabimimetic receptors were differentially expressed among various cancer cell lines and suggest that this receptor diversity may contribute to the heterogeneous effects produced by the differing Cannabis extracts on each cell line. Our overall findings indicate that the effect of a Cannabis extract on a specific cancer cell line relies on the extract's composition as well as on certain characteristics of the targeted cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...